Part Number Hot Search : 
LVC1G AD834 LVC1G LVC1G AP02N40P 11100 DAN2222E LVC1G
Product Description
Full Text Search
 

To Download APT60GF120JRDQ3 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  052-6287 rev a 4-2006 APT60GF120JRDQ3 typical performance curves maximum ratings all ratings: t c = 25c unless otherwise speci?ed. static electrical characteristics characteristic / test conditionscollector-emitter breakdown voltage (v ge = 0v, i c = 350a) gate threshold voltage (v ce = v ge , i c = 500a, t j = 25c) collector-emitter on voltage (v ge = 15v, i c = 100a, t j = 25c) collector-emitter on voltage (v ge = 15v, i c = 100a, t j = 125c) collector cut-off current (v ce = 1200v, v ge = 0v, t j = 25c) 2 collector cut-off current (v ce = 1200v, v ge = 0v, t j = 125c) 2 gate-emitter leakage current (v ge = 20v) symbol v (br)ces v ge(th) v ce(on) i ces i ges units volts ma na symbol v ces v ge i c1 i c2 i cm ssoa p d t j ,t stg APT60GF120JRDQ3 1200 30 149 79 300 300a @ 1200v 625 -55 to 150 unit volts amps watts parametercollector-emitter voltage gate-emitter voltage continuous collector current @ t c = 25c continuous collector current @ t c = 100c pulsed collector current 1 switching safe operating area @ t j = 150c total power dissipationoperating and storage junction temperature range apt website - http://www.advancedpower.com caution: these devices are sensitive to electrostatic discharge. proper hand ling procedures should be followed. min typ max 1200 4.5 5.5 6.5 2.5 3.0 3.1 0.35 3.0 100 the fast igbt is a new generation of high voltage power igbts. using non-punch through technology, the fast igbt combined with an apt free wheeling ultra fast recovery epi- taxial diode (fred) offers superior ruggedness and fast switching speed. ? low forward voltage drop ? high freq. switching to 20khz ? rbsoa and scsoa rated ? ultra low leakage current ? ultrafast soft recovery anti-parallel diode fast igbt & fred ? s o t - 2 2 7 isotop ? file # e145592 "ul recognized" g e e c c e g 1200v APT60GF120JRDQ3 downloaded from: http:///
052-6287 rev a 4-2006 APT60GF120JRDQ3 dynamic characteristics symbol c ies c oes c res v gep q g q ge q gc ssoa t d(on) t r t d(off) t f e on1 e on2 e off t d(on) t r t d(off) t f e on1 e on2 e off test conditions capacitance v ge = 0v, v ce = 25v f = 1 mhz gate charge v ge = 15v v ce = 600v i c = 100a t j = 150c, r g = 1.0 ?, v ge = 15v, l = 100h,v ce = 1200v inductive switching (25c) v cc = 800v v ge = 15v i c = 100a r g = 1.0 ? t j = +25c inductive switching (125c) v cc = 800v v ge = 15v i c = 100a r g = 1.0 ? t j = +125c characteristicinput capacitance output capacitance reverse transfer capacitance gate-to-emitter plateau voltage total gate charge 3 gate-emitter charge gate-collector ("miller ") charge switching safe operating area turn-on delay time current rise time turn-off delay time current fall time turn-on switching energy 4 turn-on switching energy (with diode) 5 turn-off switching energy 6 turn-on delay timecurrent rise time turn-off delay time current fall time turn-on switching energy 4 4 turn-on switching energy (with diode) 5 5 turn-off switching energy 6 min typ max 7080 785 435 10.0 685 80 420 300 44 100 460 38 14.6 16.4 6.5 44 100 540 125 14.6 21.4 9.2 unit pf v nc a ns m j ns m j 1 repetitive rating: pulse width limited by maximum junction temperature. 2 for combi devices, i ces includes both igbt and diode leakages 3 see mil-std-750 method 3471. 4 e on1 is the clamped inductive turn-on energy of the igbt only, without the effect of a commutating diode reverse recovery current adding to the igbt turn-on loss. tested in inductive switching test circuit shown in ?gure 21, but with a silicon carbide diode.5 e on2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the igbt turn-on switching loss. (see figures 21, 22.) 6 e off is the clamped inductive turn-off energy measured in accordance with jedec standard jesd24-1. (see figures 21, 23.) apt reserves the right to change, without notice, the speci?cations and information contained herein . thermal and mechanical characteristics unit c/w volts oz gm ib?in n?m min typ max 0.20 n/a 2500 1.03 29.2 10 1.1 characteristicjunction to case (igbt) junction to case (diode) rms voltage ( 50-60hz sinusoidal waveform from terminals to mounting base for 1 min.) package weightmaximum terminal & mounting torque symbol r jc r jc v isolation w t torque downloaded from: http:///
052-6287 rev a 4-2006 APT60GF120JRDQ3 typical performance curves v gs(th) , threshold voltage v ce , collector-to-emitter voltage (v) i c , collector current (a) i c , collector current (a) (normalized) i c, dc collector current(a) v ce , collector-to-emitter voltage (v) v ge , gate-to-emitter voltage (v) i c , collector current (a) 250s pulse test<0.5 % duty cycle 180160 140 120 100 8060 40 20 0 180160 140 120 100 8060 40 20 05 4 3 2 1 0 1.151.10 1.05 1.00 0.95 0.90 0.85 0.80 0.75 0.70 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 0 5 10 15 20 25 30 0 2 4 6 8 10 12 0 100 200 300 400 500 600 700 800 8 10 12 14 16 0 25 50 75 100 125 150 -50 -25 0 25 50 75 100 125 150 -50 -25 0 25 50 75 100 125 150 350300 250 200 150 100 50 0 1614 12 10 86 4 2 0 5 4 3 2 1 0 250200 150 100 50 0 v ce , collecter-to-emitter voltage (v) v ce , collecter-to-emitter voltage (v) figure 1, output characteristics(t j = 25c) figure 2, output characteristics (t j = 125c) v ge , gate-to-emitter voltage (v) gate charge (nc) figure 3, transfer characteristics figure 4, gate charge v ge , gate-to-emitter voltage (v) t j , junction temperature (c) figure 5, on state voltage vs gate-to- emitter voltage figure 6, on state voltage vs junction tem perature t j , junction temperature (c) t c , case temperature (c) figure 7, threshold voltage vs. junction temperature figure 8, dc collector current vs case temper ature 15v 12v 11v 9v 13v 8v v ge = 15v. 250s pulse test <0.5 % duty cycle t j = 125c t j = 25c t j = -55c t j = 125c t j = 25c t j = -55c v ge = 15v v ce = 960v v ce = 600v v ce = 240v i c = 100a t j = 25c t j = 25c. 250s pulse test <0.5 % duty cycle 10v i c = 200a i c = 100a i c = 50a i c = 200a i c = 100a i c = 50a downloaded from: http:///
052-6287 rev a 4-2006 APT60GF120JRDQ3 v ge =15v,t j =125c v ge =15v,t j =25c v ce = 800v r g = 1.0 ? l = 100h switching energy losses (mj) e on2 , turn on energy loss (mj) t r, rise time (ns) t d(on) , turn-on delay time (ns) switching energy losses (mj) e off , turn off energy loss (mj) t f, fall time (ns) t d (off) , turn-off delay time (ns) i ce , collector to emitter current (a) i ce , collector to emitter current (a) figure 9, turn-on delay time vs collector current figure 10, turn-off delay time vs collector curre nt i ce , collector to emitter current (a) i ce , collector to emitter current (a) figure 11, current rise time vs collector current figure 12, current fall time vs collector curre nt i ce , collector to emitter current (a) i ce , collector to emitter current (a) figure 13, turn-on energy loss vs collector current figure 14, turn off energy loss vs collector current r g , gate resistance (ohms) t j , junction temperature (c) figure 15, switching energy losses vs. gate resistance figure 16, switching energy losses vs junc tion temperature r g = 1.0 ? , l = 100 h, v ce = 800v v ce = 800v t j = 25c or 125c r g = 1.0 ? l = 100h v ge = 15v t j = 25 or 125c,v ge = 15v 20 40 60 80 100 120 140 160 20 40 60 80 100 120 140 160 20 40 60 80 100 120 140 160 20 40 60 80 100 120 140 160 20 40 60 80 100 120 140 160 20 40 60 80 100 120 140 160 0 5 10 15 20 0 25 50 75 100 125 r g = 1.0 ? , l = 100 h, v ce = 800v 6050 40 30 20 10 0 200180 160 140 120 100 8060 40 20 0 5040 30 20 10 0 7060 50 40 30 20 10 0 t j = 125c, v ge = 15v t j = 25c, v ge = 15v 600500 400 300 200 100 0 140120 100 8060 40 20 0 1614 12 10 86 4 2 0 4540 35 30 25 20 15 10 50 v ce = 800v v ge = +15v r g = 1.0 ? t j = 125c t j = 25c v ce = 800v v ge = +15v r g = 1.0 ? t j = 125c t j = 25c e on2, 200a e off, 200a e on2, 100a e off, 100a e on2, 50a e off, 50a v ce = 800v v ge = +15v t j = 125c v ce = 800v v ge = +15v r g = 1.0 ? e on2, 200a e off, 200a e on2, 100a e off, 100a e on2, 50a e off, 50a downloaded from: http:///
052-6287 rev a 4-2006 APT60GF120JRDQ3 typical performance curves 0.240.20 0.16 0.12 0.08 0.04 0 z jc , thermal impedance (c/w) 0.3 single pulse rectangular pulse duration (seconds) figure 19a, maximum effective transient thermal impedance, junction-to-case vs pulse duration 10 -5 10 -4 10 -3 10 -2 10 -1 1.0 10 20,00010,000 5,0001,000 500100 350300 250 200 150 100 50 0 c, capacitance ( p f) i c , collector current (a) v ce , collector-to-emitter voltage (volts) v ce , collector to emitter voltage figure 17, capacitance vs collector-to-emitter voltage figure 18,minimim switching safe operatin g area 0 10 20 30 40 50 0 200 400 600 800 1000 1200 1400 figure 19b, transient thermal impedance model 20 30 40 50 60 70 80 90 100 f max , operating frequency (khz) i c , collector current (a) figure 20, operating frequency vs collector current t j = 125 c d = 50 %v ce = 800v r g = 1.0 ? 5010 51 0.5 0.1 0.05 f max = min (f max , f max2 ) 0.05 f max1 = t d(on) + t r + t d(off) + t f p diss - p cond e on2 + e off f max2 = p diss = t j - t c r jc c res c ies c oes d = 0.9 0.7 peak t j = p dm x z jc + t c duty factor d = t 1 / t 2 t 2 t 1 p dm note: t c = 75 c t c = 100 c 0.0410 0.123 0.0358 0.0374 0.680 19.17 dissipated power (watts) t j (c) t c (c) z ext are the external thermal impedances: case to sink, sink to ambient, etc. set to zero when modeling only the case to junction. z ext downloaded from: http:///
052-6287 rev a 4-2006 APT60GF120JRDQ3 figure 22, turn-on switching waveforms and de?nitions figure 23, turn-off switching waveforms and de?nitions t j = 125c switching energy 5% 10% t d(on) 90% 10% t r t j = 125c switching energy 0 90% t d(off) 10% t f 90% apt60dq120 collector current collector voltage gate voltage collector voltage collector current gate voltage i c a d.u.t. v ce figure 21, inductive switching test circui t v cc downloaded from: http:///
052-6287 rev a 4-2006 APT60GF120JRDQ3 typical performance curves characteristic / test conditionsmaximum average forward current (t c = 85c, duty cycle = 0.5) rms forward current (square wave, 50% duty)non-repetitive forward surge current (t j = 45c, 8.3ms) symbol i f (av) i f (rms) i fsm symbol v f characteristic / test conditions i f = 60a forward voltage i f = 120a i f = 60a, t j = 125c static electrical characteristics unit amps unit volts min typ max 2.5 3.07 1.82 APT60GF120JRDQ3 6073 540 dynamic characteristics maximum ratings all ratings: t c = 25c unless otherwise speci?ed. ultrafast soft recovery anti-parallel diode min typ max - 60 - 265 - 560 - 5 - - 350 - 2890 - 13 - - 150 - 4720 - 40 - unit ns nc amps ns nc amps ns nc amps characteristicreverse recovery time reverse recovery time reverse recovery charge maximum reverse recovery current reverse recovery time reverse recovery charge maximum reverse recovery current reverse recovery time reverse recovery charge maximum reverse recovery current symbol t rr t rr q rr i rrm t rr q rr i rrm t rr q rr i rrm test conditions i f = 60a, di f /dt = -200a/ s v r = 800v, t c = 25 c i f = 60a, di f /dt = -200a/ s v r = 800v, t c = 125 c i f = 60a, di f /dt = -1000a/ s v r = 800v, t c = 125 c i f = 1a, di f /dt = -100a/ s, v r = 30v, t j = 25 c figure 24b, transient thermal impedance model z jc , thermal impedance (c/w) 10 -5 10 -4 10 -3 10 -2 10 -1 1.0 rectangular pulse duration (seconds) figure 24a. maximum effective transient thermal impedance, junction-to-case vs. pulse duration 0.600.50 0.40 0.30 0.20 0.10 0 0.5 single pulse 0.1 0.3 0.7 d = 0.9 0.05 peak t j = p dm x z jc + t c duty factor d = t 1 / t 2 t 2 t 1 p dm note: 0.148 0.238 0.174 0.006 0.091 0.524 dissipated power (watts) t j (c) t c (c) z ext are the external thermal impedances: case to sink, sink to ambient, etc. set to zero when modeling only the case to junction. z ext downloaded from: http:///
052-6287 rev a 4-2006 APT60GF120JRDQ3 400350 300 250 200 150 100 50 0 5045 40 35 30 25 20 15 10 50 duty cycle = 0.5 t j = 175 c 9080 70 60 50 40 30 20 10 0 t j , junction temperature ( c) case temperature ( c) figure 29. dynamic parameters vs. junction temperature figure 30. maximum average fo rward current vs. casetemperature v r , reverse voltage (v) figure 31. junction capacitance vs. reverse voltage 200180 160 140 120 100 8060 40 20 0 70006000 5000 4000 3000 2000 1000 0 q rr , reverse recovery charge i f , forward current (nc) (a) i rrm , reverse recovery current t rr , reverse recovery time (a) (ns) t j = 125 c v r = 800v t j = 125 c v r = 800v t j = 125 c v r = 800v t j = 175 c t j = -55 c t j = 25 c t j = 125 c 0 1 2 3 4 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 30a 60a 120a 120a 30a 60a t rr q rr q rr t rr i rrm 1.21.0 0.8 0.6 0.4 0.2 0.0 350300 250 200 150 100 50 0 c j , junction capacitance k f , dynamic parameters (pf) (normalized to 1000a/ s) i f(av) (a) 0 25 50 75 100 125 150 25 50 75 100 125 150 175 1 10 100 200 120a 60a 30a v f , anode-to-cathode voltage (v) -di f /dt, current rate of change(a/ s) figure 25. forward current vs. forward voltage figure 26. reverse recovery time vs. current rate of change -di f /dt, current rate of change (a/ s) -di f /dt, current rate of change (a/ s) figure 27. reverse recovery charge vs. current rate of change figure 28. reverse recovery cu rrent vs. current rate of change downloaded from: http:///
052-6287 rev a 4-2006 APT60GF120JRDQ3 typical performance curves 4 3 1 2 5 5 zero 1 2 3 4 di f /dt - rate of diode current change through zero crossing. i f - forward conduction current i rrm - maximum reverse recovery current. t rr - reverse r ecovery time, measured from zero crossing where diode q rr - area under the curve defined by i rrm and t rr . current goes from positive to negative, to the point at which the straight line through i rrm and 0.25 i rrm passes through zero. figure 32. diode test circuit figure 33, diode reverse recovery waveform and definitions 0.25 i rrm pearson 2878 current transformer di f /dt adjust 30 h d.u.t. +18v 0v v r t rr / q rr waveform apt10035lll sot-227 (isotop ? ) package outline . i sotop ? is a registered trademark of sgs thomson. 31.5 (1.240)31.7 (1.248) dimensions in millimeters and (inches) 7.8 (.307)8.2 (.322) 30.1 (1.185)30.3 (1.193) 38.0 (1.496)38.2 (1.504) 14.9 (.587)15.1 (.594) 11.8 (.463)12.2 (.480) 8.9 (.350)9.6 (.378) hex nut m4 (4 places) 0.75 (.030)0.85 (.033) 12.6 (.496)12.8 (.504) 25.2 (0.992)25.4 (1.000) 1.95 (.077)2.14 (.084) * emitter/anode collector/cathode gate * r = 4.0 (.157) (2 places) 4.0 (.157)4.2 (.165) (2 places) w=4.1 (.161)w=4.3 (.169) h=4.8 (.187)h=4.9 (.193) (4 places) 3.3 (.129)3.6 (.143) * emitter/anode emitter/anode terminals are shorted internally. current handling capability is equal for either emitter/anode terminal. downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of APT60GF120JRDQ3

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X